Graphing $y = a(x - h)^2 + k$ Extension 8.4

Key Idea

The **vertex form** of a quadratic function is $y = a(x - h)^2 + k$, where $a \neq 0$. The vertex of the parabola is (h, k).

Key Idea

The **vertex form** of a quadratic function is $y = a(x - h)^2 + k$, where $a \neq 0$. The vertex of the parabola is (h, k).

Graphing $y = (x - h)^2$

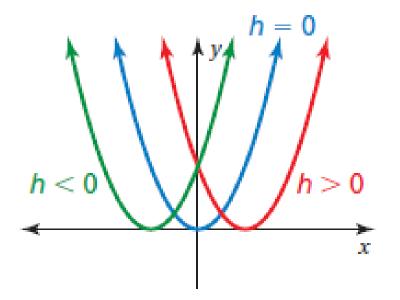
When *h* > 0, the graph of *y* = (*x* − *h*)² is a horizontal translation *h* units to the right of the graph of *y* = *x*².

Key Idea

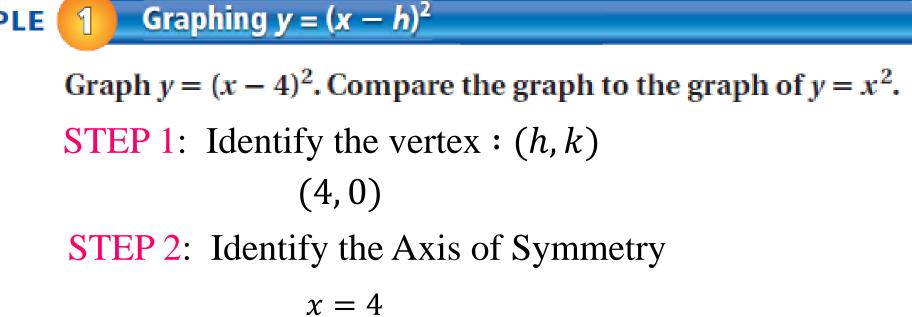
The **vertex form** of a quadratic function is $y = a(x - h)^2 + k$, where $a \neq 0$. The vertex of the parabola is (h, k).

Graphing $y = (x - h)^2$

- When h > 0, the graph of y = (x h)² is a horizontal translation h units to the right of the graph of y = x².
- When h < 0, the graph of $y = (x h)^2$ is a horizontal translation *h* units to the left of the graph of $y = x^2$.



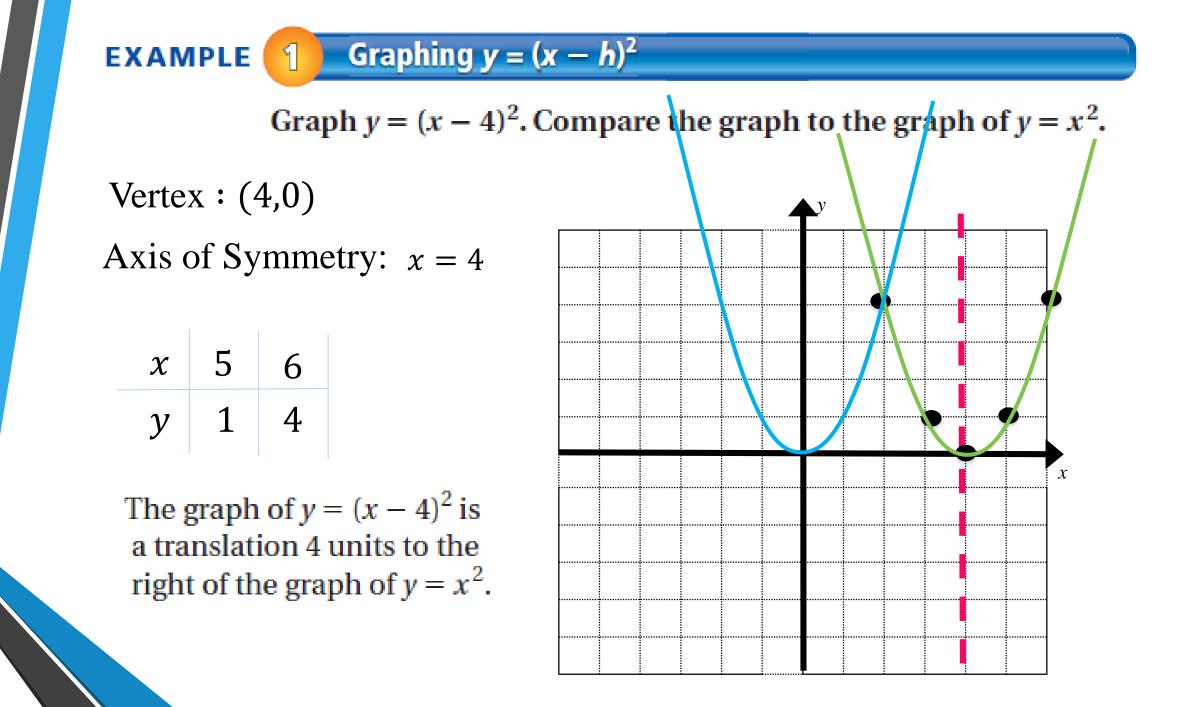
EXAMPLE (1) Graphing $y = (x - h)^2$ Graph $y = (x - 4)^2$. Compare the graph to the graph of $y = x^2$. **STEP 1**: Identify the vertex : (h, k)(4,0) Really? $y = a(x - h)^2$ is the same as $y = a\{x + (-h)\}^2$ Still hard to believe? Let's write $y = (x - 4)^2$ as a simplified polynomial. y = (x - 4)(x - 4) $y = x^2 - 4x - 4x + 16$ $y = x^2 - 8x + 16$ $-\frac{b}{2a} = -\frac{(-8)}{2} = 4$



1)

EXAMPLE

STEP 3: Find two other points and **reflect** them across the Axis of symmetry. Then connect the five points with a smooth curve.



EXAMPLE 2 Graphing $y = (x - h)^2 + k^2$

Graph $y = (x + 5)^2 - 1$. Compare the graph to the graph of $y = x^2$. STEP 1: Identify the vertex : (h, k)(-5, -1)STEP 2: Identify the Axis of Symmetry x = -5

STEP 3: Find two other points and **reflect** them across the Axis of symmetry.

EXAMPLE 2 Graphing $y = (x - h)^2 + k^2$

