Graphing $y=a(x-h)^{2}+k$

Extension 8.4

Key Idea

The vertex form of a quadratic function is $y=a(x-h)^{2}+k$, where $a \neq 0$. The vertex of the parabola is (h, k).

Key Idea

The vertex form of a quadratic function is $y=a(x-h)^{2}+k$, where $a \neq 0$. The vertex of the parabola is (h, k).

Graphing $\boldsymbol{y}=(\boldsymbol{x}-\boldsymbol{h})^{\mathbf{2}}$

- When $h>0$, the graph of $y=(x-h)^{2}$ is a horizontal translation h units to the right of the graph of $y=x^{2}$.

Key Idea

The vertex form of a quadratic function is $y=a(x-h)^{2}+k$, where $a \neq 0$. The vertex of the parabola is (h, k).

Graphing $y=(x-h)^{2}$

- When $h>0$, the graph of $y=(x-h)^{2}$ is a horizontal translation h units to the right of the graph of $y=x^{2}$.
- When $h<0$, the graph of $y=(x-h)^{2}$ is a horizontal translation h units to the left of the graph of $y=x^{2}$.

EXAMPLE Graphing $y=(x-h)^{2}$

Graph $y=(x-4)^{2}$. Compare the graph to the graph of $y=x^{2}$. STEP 1: Identify the vertex : (h, k)

$$
(4,0) \quad \text { Really? }
$$

$$
y=a(x-h)^{2} \text { is the same as } y=a\{x+(-h)\}^{2}
$$ Still hard to believe?

Let's write $y=(x-4)^{2}$ as a simplified polynomial.

$$
\begin{aligned}
y & =(x-4)(x-4) \\
y & =x^{2}-4 x-4 x+16 \\
y & =x^{2}-8 x+16 \\
-\frac{b}{2 a} & =-\frac{(-8)}{2}=4
\end{aligned}
$$

EXAMPLE Graphing $y=(x-h)^{2}$

Graph $y=(x-4)^{2}$. Compare the graph to the graph of $y=x^{2}$. STEP 1: Identify the vertex : (h, k)

$$
(4,0)
$$

STEP 2: Identify the Axis of Symmetry

$$
x=4
$$

STEP 3: Find two other points and reflect them across the Axis of symmetry. Then connect the five points with a smooth curve.

x	5	6
y	1	4

EXAMPLE Graphing $\boldsymbol{y}=(\boldsymbol{x}-\boldsymbol{h})^{2}$

Graph $y=(x-4)^{2}$. Compare the graph to the graph of $y=x^{2}$.
Vertex : $(4,0)$
Axis of Symmetry: $x=4$

x	5	6
y	1	4

The graph of $y=(x-4)^{2}$ is a translation 4 units to the right of the graph of $y=x^{2}$.

EXAMPLE 2 Graphing $y=(x-h)^{2}+k$

Graph $y=(x+5)^{\iota}-1$. Compare the graph to the graph of $y=x^{c}$.
STEP 1: Identify the vertex : (h, k)

$$
(-5,-1)
$$

STEP 2: Identify the Axis of Symmetry

$$
x=-5
$$

STEP 3: Find two other points and reflect them across the Axis of symmetry.

$$
\begin{array}{c|c|c}
x & -4 & -3 \\
y & 0 & 3
\end{array}
$$

EXAMPLE 2 Graphing $y=(x-h)^{2}+k$

Graph $y=(x+5)^{2}-1$. Compare the graph to the graph of $y=x^{2}$.
Vertex : $(-5,-1)$
Axis of Symmetry: $x=-5$

x	-4	-3
y	0	3

The graph of $y=(x+5)^{2}-1$ is a translation 5 units to the left and 1 unit down.

